On S-packing edge-colorings of cubic graphs

نویسندگان

  • Nicolas Gastineau
  • Olivier Togni
چکیده

Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an Spacking edge-coloring of a graph G is a partition of the edge set of G into k subsets {X1,X2, . . . ,Xk} such that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e′ ∈ Xi is at least si + 1. This paper studies S-packing edgecolorings of cubic graphs. Among other results, we prove that cubic graphs having a 2-factor are (1, 1, 1, 3, 3)-packing edge-colorable, (1, 1, 1, 4, 4, 4, 4, 4)-packing edgecolorable and (1, 1, 2, 2, 2, 2, 2)-packing edge-colorable. We determine sharper results for cubic graphs of bounded oddness and 3-edge-colorable cubic graphs and we propose many open problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing chromatic number under local changes in a graph

The packing chromatic number χρ(G) of a graph G is the smallest integer k such that there exists a k-vertex coloring of G in which any two vertices receiving color i are at distance at least i+ 1. It is proved that in the class of subcubic graphs the packing chromatic number is bigger than 13, thus answering an open problem from [Gastineau, Togni, S-packing colorings of cubic graphs, Discrete M...

متن کامل

S-packing colorings of cubic graphs

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

On the Number of 3-Edge Colorings of Cubic Graphs

In this paper we present a short algebraic proof for a generalization of a formula of R. Penrose, Some applications of negative dimensional tensors, in: Combinatorial Mathematics and its Applications Welsh (ed.), Academic Press, 1971, pp. 221–244 on the number of 3-edge colorings of a plane cubic graph. We also show that the number of 3-edge colorings of cubic graphs can be computed (up to a fa...

متن کامل

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

On Interval Edge Colorings of Biregular Bipartite Graphs With Small Vertex Degrees

A proper edge coloring of a graph with colors 1, 2, 3, . . . is called an interval coloring if the colors on the edges incident to each vertex form an interval of integers. A bipartite graph is (a, b)-biregular if every vertex in one part has degree a and every vertex in the other part has degree b. It has been conjectured that all such graphs have interval colorings. We prove that all (3, 6)-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10906  شماره 

صفحات  -

تاریخ انتشار 2017